
Alex Francoeur

October 1, 2025

1

Beyond monitoring
How we built an open-source, self-healing Postgres agent

Alex Francoeur

October 1, 2025

2

Beyond monitoring

How we built an open-source, self-healing Postgres agent
and why we’re building

● Product @ Xata

● Greater Boston

● Happily married with 2 kids

● Proud father of 6 chickens and 1 dog

● Soccer / football player, runner,

snowboarder and year-round-coach

● Putzer-arounder, tinkerer, hacker (well,

probably more of a vibe coder now)

Me, on a slide

Professional me, on a slide

Postgres at scale
“Postgres at scale” for Xata means more than

just handling large data or compute. It’s about
scaling team productivity and operations.

xataio/pgstreamxataio/pgroll xataio/agent

Monitoring relied
on console lights,
SMF records, and

simple SNMP alerts.

Foundations
1960s-1980s

DB administrators
focused on

mainframe RDBMS,
backups, and
console-based
operations.

System management
platforms (HP
OpenView, IBM

Tivoli, BMC, CA)
centralized

infrastructure
monitoring.

Centralization
1990s-Mid 2000s

DBAs managed
client-server
databases with
replication,

clustering, and
tuning.

Splunk popularized
log search; early
APM tools tied
performance to

end-user experience

Logs & Apps
2000s

Ops DBAs supported
web-scale apps,

ensuring uptime and
managing complex HA

setups.

ELK, Prometheus,
and SaaS platforms

like Datadog
enabled

developer-centric,
cloud-native
monitoring.

Cloud and
DevOps
2010s

Traditional DBA
roles blurred into
SRE and DevOps,

with automation and
CI/CD at the core.

Loki and Tempo
introduced

efficient storage
for logs and traces
to manage telemetry

growth.

Scale &
Specialization

2018+

Platform and
DataOps roles

emerged,
integrating

database management
with pipelines and

analytics.

OpenTelemetry,
eBPF, and ML

brought predictive
insights and

auto-remediation
into observability

Intelligence
Era
2020+

DevSecOps practices
embedded security

and compliance into
database workflows.

13

Are AI agents the future of observability?

Monitor

Detect

Notify

Investigate

Remediate

https://xata.io/blog/are-ai-agents-the-future-of-observability

Monitor p95/p99 latency SLI + pg_stat_statements mean_time

Detect Alert: p99 > 500ms for 10m, burn-rate breach

Notify PagerDuty fires with top slow normalized query +
service/version

Investigate
SELECT ... FROM pg_stat_statements ORDER BY total_time DESC LIMIT 5;

EXPLAIN (ANALYZE, BUFFERS) … WHERE user_id = $1 AND created_at >
now()-interval '7d';

SELECT indexname,indexdef FROM pg_indexes WHERE tablename='orders';

Remediate
CREATE INDEX CONCURRENTLY IF NOT EXISTS

idx_orders_user_created ON orders(user_id, created_at DESC);
ANALYZE orders, confirm plan changes, watch latency recover.

Input SLI breach + top query trace

Plan Hypothesis “missing composite index”

Act Run EXPLAIN, create index concurrently, kick ANALYZE

Evaluate Compare p95 and mean_time before/after, ensure error budget
stabilizes

Iterate Add CI EXPLAIN gate for critical queries, tighten alert context
(include rows, heap_blks_read, idx_scan deltas)

https://azure.microsoft.com/en-us/blog/automatic-tuning-will-be-a-new-default

https://azure.microsoft.com/en-us/blog/automatic-tuning-will-be-a-new-defaul

https://www.oracle.com/se/corporate/pressrelease/oracle-autonomous-transaction-processing-2018-08-07.html

https://www.oracle.com/se/corporate/pressrelease/oracle-autonomous-transaction-processing-2018-08-07.html

https://cloud.google.com/alloydb/docs/index-advisor-overview

https://cloud.google.com/alloydb/docs/index-advisor-overview

https://supabase.com/blog/supabase-ai-assistant-v2

https://supabase.com/blog/supabase-ai-assistant-v2

https://clickhouse.com/blog/agentic-analytics-ask-ai-agent-and-remote-mcp-server-beta-launch

https://clickhouse.com/blog/agentic-analytics-ask-ai-agent-and-remote-mcp-server-beta-launch

https://planetscale.com/principles

https://web.archive.org/web/20230619061822/https://planetscale.com/principles

https://m12.vc/news/founders-feature-neon/

https://m12.vc/news/founders-feature-neon/

https://postgres.ai/blog/20250725-self-driving-postgres

https://postgres.ai/blog/20250725-self-driving-postgres

PostgresAI

https://postgres.ai/blog/20250725-self-driving-postgres

https://postgres.ai/blog/20250725-self-driving-postgres

27

From DBA to DB Agent
https://xata.io/blog/dba-to-db-agent

https://xata.io/blog/dba-to-db-agent

28

● CPU utilization

● Memory consumption

● Performance issues

● Query optimization

● Resource utilization

Tier 1 Triage

Walk through

Building the Agent

Xata Agent
xataio/agent

https://github.com/xataio/agent

● Next.js

● Postgres

● TypeScript

● Vercel AI SDK

● MCP TypeScript SDK

● Self-host via docker-compose

● Mastra TypeScript AI Framework

● Ollama for local models

● LangFuse for observability

● LiteLLM as AI API gateway

Tech Stack

Run playbooks at
scheduled or
agent defined
intervals

Schedule

Sequence of
steps that the
agent can follow

to detect,
diagnose, and
resolve issues

Playbooks

Functions that
can be called by
the agent to
gather more

context and act

Tools

Workflows to
approve

recommendations
from the agent

Approve

Schedule
Input

● Execute playbooks periodically

● Allows chaining of playbooks:

○ Based on the findings of a

playbook, “drill down” using

another playbook.

● Keep history of runs and outcomes

○ This will become the agent

“memory”

35

Schedules / Monitors

Playbooks
Plan

36

● Playbook examples:

○ generalMonitoring

○ investigateHighCPU

○ investigateLowMemory

○ investigateHighConnectionCount

○ tuneSettings

○ dailySummary

Playbooks

Playbooks are editable

Tools
Act

● A mix of simple and complex tools

for the agent to act

● Tool examples:

○ getInstanceMetric()

○ getInstanceLogs()

○ getSlowQueries()

○ explainQuery()

○ getSettings()

○ getTablesInfo()

○ getPostgresExtensions()

Tools

Example tool implementation: getSlowQueries

● Proposed by Anthropic but now the

industry standard

● An MCP server exposes

○ Resources

○ Tools

○ Prompts

● Many companies are adding MCP

servers for their services

● Range from API wrapper to use case

oriented

Model Context Protocol

● MCP

○ Local MCP server (stdio)

○ Remote MCP server (jsonrpc)

● Local MCP makes it easy to add

your own tools:

○ Write them in TS or Python,

drop them in a folder

● As cloud providers add MCP

servers, the agent can just use

them.

43

Custom tools: MCP servers

Approval
Evaluate

44

Recommend

Provide recommendations
for end users to act on

Approval

Provide recommendations
and the ability approve
changes for the agent to

acton

Autonomous

YOLO

Fine Tune
Iterate

● Uses Vercel AI SDK as an abstraction layer

for multiple models

○ OpenAI

○ Anthropic

○ Deepseek

○ Gemini

○ Ollama

○ LiteLLM

● Reasoning models tend to do better on

agentic use cases

○ Better answers/reasoning > speed

○ More expensive

Models

Evals
What

● LLM judges

● Repeatable test designed to measure

some aspect of model behavior

● Crucial for tracking improvements,

identifying regressions, and

understanding limitations

When

● A playbook / prompt is changed

● A new model is release

● A new tool is added

LLM Judges score 󰥟 Did it identify the root cause? Is the feedback actionable? Is it

concise or too much to read?

Evals

Challenges

Can I really trust an agent?

Is my data safe and private?

Is an agent cost effective for observability?

Should I YOLO?

What’s next
Looking ahead

Model tool / function calling support

Safely run arbitrary SQL

Better short & long term memory

Code & observability integrations

Agent Roadmap

GitHub approval flows

Xata Demo
Not a product pitch, just setting context – I swear

Store more context: metrics, logs, query stats, schema changes

Recommendation engine: Slow queries first

Apply to new CoW branch & test workflow

Custom playbook & tooling support

Autonomous Postgres

Non-functional requirements – evals, notifications, etc.

Deploy and provide feedback

● Works with any Postgres

● Native support for:

○ AWS RDS, Amazon Aurora, GCP Cloud SQL

Contribute to the project

● We are friendly to outside contributions

● Gain experience with any of these technologies

○ Next.js / Typescript

○ Evals

○ LLM Memory

○ GitHub integration

Join in on the fun

http://next.js

60

 ++++ +++++
 +++++++++ ++++++++++
 +++++++++++++ +++++++++++++
 +++++++++++++++= +++++++++++++++
 +++++++++++++++=== +=++++++++++++++++
 +++++++++++++======= =====++++++++++++++++
 +++++++++++++========== ==========+++++++++++++
 +++++++++++++============= =============+++++++++++++
 +++++++++++================= ================+++++++++++++
++++++++++===================== ==================++++++++++++
++++++++++====================== ======================++++++++++
++++++++========================== ========================+=++++++++
++++++++============================ ============================+++++++++
++++++================================ ==============================+=+++++++
++++++================================== =================================+++++++
++++++=================================== ===================================++++++
+++++===================================== =====================================+++++
++++======================================= =======================================++++
 +++== ==++++
 +++=== ===+++
 +=== ===+
 =+=== ===+
 == ==
 == ===
 === ===
 == ===+
 == ==
 ====================================== =======================================
 ===================================== =====================================
 === =================================== =================================== ====
 ======= ================================= ================================= ======
 ========= =============================== =============================== =========
 ============ ============================ ============================ ============
 ============== ========================== =========================== ==============
 ================= ======================= ======================== =================
 =================== ====================== ====================== ===================
 ===================== =================== =================== =====================
 ======================== ================ ================ =======================
 +======================== ============= ============= =========================
 ========================== ========== ========== ==========================
 ++========================== ====== ======= ===========================+
 ++++========================== === === ==========================++++
 +++++========================== ==========================++++
 +++++++======================== ==========================+++++
 +++++++====================== ======================+++++++
 +++++++++=================== ===================++++++++
 ++++++++++=============== ===============+++++++++
 ++++++++++============ ============++++++++++
 +++++++++++======== =========++++++++++
 ++++++++++++==== ====++++++++++++
 +++++++++++++ +++++++++++++
 +++++++++ +++++++++
 ++++++ +++++

Thank you!

Postgres at scale

alexf@xata.io

xata.io

alex-francoeur

